
Symmetric Elliptic Integrals of the Third Kind* 

By D. G. Zill and B. C. Carlson 

Abstract. Legendre's incomplete elliptic integral of the third kind can be replaced by an 
integral which possesses permutation symmetry instead of a set of linear transformations. 
Two such symmetric integrals are discussed, and direct proofs are given of properties cor- 
responding to the following parts of the Legendre theory: change of parameter, Landen 
and Gauss transformations, interchange of argument and parameter, relation of the com- 
plete integral to integrals of the first and second kinds, and addition theorem. The theory 
of the symmetric integrals offers gains in simplicity and unity, as well as some new gen- 
eralizations and some inequalities. 

1. Introduction. Present practices in tabulating and computing elliptic integrals 
are influenced more than one might suppose by the choice of standard integrals 
which Legendre made near the end of the eighteenth century. In the light of later 
developments, especially Weierstrass' theory of elliptic functions and Appell's 
double hypergeometric series, it appears that Legendre's choice conceals and even 
runs against the grain of an underlying permutation symmetry which offers im- 
portant simplifications in practice as well as theory. Whether these simplifications 
outweigh the familiarity of Legendre's integrals is a partly subjective question, but 
it seems important at least to determine the price of adhering to tradition. A modern 
choice of standard elliptic integrals of the first and second kinds was investigated 
theoretically in [3] and later applied to practical questions of computation [4] and 
tabulation [10]. The present paper extends the theoretical background to integrals 
of the third kind. 

Permutation symmetry has a bearing even on Legendre's complete integral 
of the first kind, K(k), for the quantity 

(1.1) 2l/S K[(1 - 1)1/2]= 2 2 (x cos2 0 + ysin2 0)1/2d 
is seen to be symmetric in x and y by putting 0 = - 2- . The right-hand side of 
(1.1), after being identified by Gauss with the reciprocal of the arithmetic-geometric 
mean of xl/2 and yl /2, formed the starting point of his study of elliptic functions; one 
may therefore say that Gauss initiated the use of homogeneous symmetric elliptic 
integrals in the complete case. The consequences of permutation symmetry are more 
extensive in the incomplete integral F(0, k), for the symmetry in x, y, z of the 
quantity 

(1.2) (z - xy)-/2Fcos-l ()1/2 (z _)1/2] 
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expresses succinctly the content of the five linear transformations [11, p. 210] of F, 
one for each nontrivial permutation of x, y, z. A notation using x, y, z as variables 
in place of p, k eliminates the linear transformations and also the excess quadratic 
transformations which result from combining quadratic with linear transformations. 
The change of variables is not a sufficient remedy for Legendre's integrals of the 
second and third kinds, for these must be combined with F to get symmetric 
quantities. Symmetry or lack of it can be made conspicuous by using the hypergeo- 
metric R-function, R(a; bi, b2, ..., bk; z1, Z2, , Zk), which is unchanged by 
permutation of the subscripts 1, 2, *- , k and hence is symmetric in any set of 
z-variables whose corresponding b-parameters are equal [2]. For example the 
standard symmetric integrals of the first kind, incomplete and complete, are taken 
in [3] to be 

(1.3) RF(X, Y, Z) = R(2; 2, Y, 2; X, Y, Z), 

RK(X, Y) = R (2; 2, y;x,y), 

and these are exactly the quantities (1.2) and (1.1). As illustrated by these examples, 
the R-function is homogeneous of degree -a in the variables. 

Let a' be defined by 

(1.4) a' = bl + b2 + + bk-a. 

The class of elliptic integrals is the class of R-functions for which exactly four of 
the parameters a, a', bi, * * *, bk are half-odd-integers and the rest are integers. The 
complete elliptic integrals are the subclass for which a and a' are both half-odd. 
If a and a' have positive real parts, the R-function has the integral representation 

foo k 

(1.5) B (a, a')R (a; bi, *, bk; z1, *, Z)-] t-1 ]| (t + z)-bidt 

whereBisthebetafunction,argt = 0, Iargzij < r, Iarg(t+z )I <ir, (i 1, 
k). The integrand contains the square root of a cubic or quartic polynomial in the 
elliptic case. Because of the restriction on a and a', this representation does not 
exist (at least not in the simple form shown here) for many important cases, in- 
cluding those chosen in [3] as standard integrals of the second kind, 

(1.6) RG(X, Y, Z) = R(-;, 2, 2 , Z), 

RE(x,y) = R(-2; 2, 4x, y) 

However, if the b-parameters have positive real parts, R can be written as a (k - 1)- 
fold integral [7] representing a weighted average of Z-a over the convex hull of 
{Z1, - Zk }, the weight function being a Dirichlet distribution with parameters 
b1, ..., bN. That RG is represented by a double integral is no hindrance to practical 
work [10] and is a minor disadvantage by comparison with the five linear transfor- 
mations of Legendre's E(p, k) [11, p. 210], which are replaced by the symmetry of 
IG. 

In this paper we shall consider two functions, RH(X, y, z, p) and Rj(x, y, z, p), 
either of which can serve to replace Legendre's normal integral of the third kind. 
Both are completely symmetric in x, y, z but perforce not in p. For numerical pur- 
poses RH has some distinct advantages, but certain relations and theorems are 
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simpler in terms of RB. (There is a similar rivalry between Legendre's integral and 
Jacobi's integral.) Fortunately it is easy to express one in terms of the other, and 
we shall use whichever is more convenient for the purpose at hand. Proving directly 
the properties of RH or Ri is usually quicker than deducing them from the cor- 
responding properties of Legendre's integral. The proofs, which seldom run parallel 
to corresponding proofs given by Cayley [8], are often more economical because 
of permutation symmetry. As expected from experience with the integrals of the 
first two kinds, symmetry not only replaces the linear transformations of Legendre's 
third integral but also gives its Landen and Gauss transformations a unified form. 
Moreover, it puts the two change-of-parameter relations in a unified form along with 
a third and apparently new relation which is a combination of the first two. The 
Landen transformation is shown to be a special case of a new quadratic transforma- 
tion of a multiple hypergeometric function with one free parameter, and a similar 
generalization is found for the change-of-parameter relations. The form taken by the 
interchange theorem is more symmetrical than for Legendre's integral but still 
rather complicated; this theorem seems to find its natural expression in terms of 
Jacobi's integral of the third kind treated as a function of two integrals of the first 
kind [8]. A new proof of the addition theorem is given for all three kinds of elliptic 
integral. Finally, because RH and Ri are R-functions with positive b-parameters, 
they satisfy some conveniently simple inequalities. 

2. Elliptic Integrals of the Third Kind. Legendre's standard elliptic integral of 
the third kind is 

(2.1) l(kta2,k) = f (1 -a2 sin2 )-1(1- k2sin2 O)-112d6 

As a rule this integral is used in numerical and other practical work, whereas the 
forms of Weierstrass and Jacobi are used in theoretical considerations. Jacobi's 
integral with angles as the first two arguments is 

lI*(, A,,k) = k2 sin ,6 cos41 (I- k2sin2 /)1/2 

(2.2) 0 
] sin2 0(1 - k2 sin2 If sin2 0)-1 ( -2 sin2 0)2/ dO . 

This integral is usually taken to be a function of two integrals of the first kind, u 
and a, related to q and A by sin A = sn u and sin ,6 = sn a. 

To reduce the above integrals to R-functions, we note the result [2, p. 470] 

f (sin 0)2a-l (sin2 4-sin2 0)a (cos 0)1-2bl (1 - k2sin2 0)-b2 

(2.3) . (I- a2 sin2 0)-b d 

= 2 B(a, a')(sin 45)2c-2R (a; b1, b2, b3, b4; cos2 A2 1 _2 sin2 , 

where 

c = a + a' = bi + b2 + b3 + b4, A2 =1 - k2 sin2 o, and Re a > 0, Re a' > 0. 

It follows that 
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II(4), a2, k) = sin4R(l; - Q , -2, 1;cosp, A2, 1, 1 - a2 sin 4)) 

(2.4) II (0, A, k) = 3 sin' 0 sin Q cos (I - k sins )1/2 

*R(A; 1 2, 1; Cos2), A2, 1,1 - k2 sin2 4sin2 t) 

Using relations between associated functions [2, p. 458], we can write II in terms of 
functions which are symmetric in their first three arguments: 

H(0 a2 k) _ -2 a sin 2 R('' 2 2, l 2 cos2 4), A2, 1, 1 - a2 sin2 4) 

+ sin 
2 RF(cOS2 4, A2, 1 

(2.5) 1-a sin4) 
2 

- a sin3 , I, , cos2 A, , 2 2 

+ sin4)RF(cos24, A 2, 1). 

This suggests that a normal elliptic integral of the third kind, possessing as much 
symmetry as possible, could be either 

RH(x, Y. Z. p) = Q(2 -2 .12 '2 I ; X, Y. Z. P) 
(2.6) 3fo 

= 1 j [(t + x)(t + y)(t + Z)"]-I2(t + p-'t dt 

or 

Rj(X, y, z, p) = R(4; -, , 1; x, y, z, p) 
(2.7 ) 3 /'Q 

2 J] [(t + x)(t + y)(t + z)]f12(t + P)1dt. 

If the a-parameter were chosen to be 5/2, 7/2, * *, the function would be algebraic, 
and the choices -1/2, - 3/2, * prove to be less convenient than either 1/2 or 3/2, 
partly because a negative a-parameter excludes the representation (1.5). Although 
Rj is a multiple of Jacobi's integral, RH is not a multiple of Legendre's. If p = 0, RH 
reduces to 2 RF while RJ has the disadvantage (for some practical purposes) of a 
logarithmic singularity. The constants multiplying the integral representations have 
the effect that 

RH=RJ=1 if x=y=z = p=1. 

If p < 0 we take the Cauchy principal value of each integral. 
We define the respective complete integrals to be 

(2.8) ~~~RL (X, Y. P) = RQ(2; '2, 12 1; jx y, p)a 

Rm(x, Y. p) = R(2; 2,12 1; X, y, p). 

A complete integral is a constant multiple of an incomplete integral with a zero 
argument. From (1.5) or [2, p. 457] we find 
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IH (X, Y. 0, p) = (37/8)RL(X, Y, P), 

RJ(X, y, 0, p) = (37r/4)RM(x, y, P), 

(2.9) RL(X, Y, 0) = 2RK(X, y), 

IH(X, y, z, ) = 2 RF(X, Y, Z), 

RH(X, Y, 0, 0) = (37r/4)RK(x, Y), 

lim P"2RHH(X, y z, p) = 

lim p2Ij(x, y, z, p) = 3RF(X, Y, Z) 
P-4c>0 

Legendre's integral (2.1) is said to be complete when q = 7r/2. From (2.5) and 
(2.9) we obtain 

4 217 2 21 
-ll(2, 

- 
) 2 RL_(l- 

Io 11,1 - a) ?,1-X2) + 2RK 

a2Rm (l - k 2 
I1, - 2 2) + 2RK(1 k2l1, 1). 

An important connection between RH and RJ is easily obtained from (2.6) and 
(2.7): 

(2.10) 2RH(x, y, z, p) + pRj(x, y, z, p) = 3RF(X, Y, Z) 

Putting z = 0 and using (2.9), we have 

(2.11) RL(X, Y, P) + pRM(x, y, p) = 2RK(X, Y)X 

Equations (2.10) and (2.11) allow rapid conversion from one choice of standard 
integrals to the other. Euler's transformation of the R-function [2, Eq. (2.8)] 
furnishes a second connection between RL and RM (cf. (4.9) below), 

(2.12) pRM(x, y, p) = RL(X, Y, Xy/P) - 

3. Linear Transformations. The linear transformations of Legendre's integrals 
F(Q, k) and E(0, k) are used to put the modulus and amplitude into ranges which 
have been tabulated. It has been shown [3] that these transformations are replaced 
by the symmetry of RF and RG in the arguments x, y, z. Similarly, the five linear 
transformations of IIQ(, a2, k) are equivalent to the five permutations of the first 
three arguments in RH or RJ, and the quantities cos 2k = X/Z, a2 = (Z - p)/(Z -X), 
and k2 = (z - y)/(z - x) are all changed by these permutations. Since RHJ are 
symmetric in x, y, z, their linear transformations are trivial. For example, if the 
imaginary-modulus transformation [1, p. 38] is written in terms of RH by using 
(2.5) and (2.6), it reduces to RH(X, Y, Z, P) = RH(X, Z, y, p). Similarly, the imaginary- 
argument transformation reduces to interchanging x and z and the reciprocal- 
modulus transformation to interchanging x and y. 

4. Change of Parameter. In (2.1), a2 is called the parameter and is real (like k2 
and 4) in most cases of practical interest. (If a2 sin2 4 > 1 the Cauchy principal 
value of the integral is to be taken.) After arranging by linear transformation (if 
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necessary) that 0 < k2 < I, the real a2 axis is divided into the four intervals (- 00, 0), 
(0, k2), (k2, 1), (1, oo). The first and third intervals are designated as circular, the 
second and fourth as hyperbolic. There exist transformations called change-of- 
parameter relations [8, pp. 119-125] connecting two integrals whose parameters are 
related either by a2a,2 = 2 or (1 - a2) (I - a12) = k'2, where k'2 = I - 2. The 
former relation maps each circular interval onto itself and interchanges the two 
hyperbolic intervals, whereas the latter relation maps each hyperbolic interval onto 
itself while interchanging the circular intervals. 

There are corresponding divisions of the real axis in the p-plane. If x, y, z are 
positive, as they are in most cases of interest, then by symmetry we may assume 
0 < x < y < z. The intervals (- o0, x), (x, y), (y, z), (z, oo) of the real p-axis will 
be labeled H', C', H, C, respectively, the first and third intervals now being hyper- 
bolic while the second and fourth are circular. The product (p - x) (p - y) (p - z) 
is positive in the circular cases and negative in the hyperbolic cases. 

If in (1.5) we substitute t = s(s + f)/(s + g), where f and g are unequal and 
nonzero but otherwise arbitrary, we obtain the useful result, valid if Re a > 0 and 
Re a' > 0, 

B (a, a')R (a; bi, * * *, bk ; z1, . *, Zk) 

(4.1) - [s(s + f)]a-l( 
+ 

g)a-l( 
+ Uo) (S + V ) H [(s + U) (s + vi)]- ids, 

where 

(4.2) uo + vo = 2g, uvo = f9g, 

us + vi = f + zi) uivi = zig, (=IX**, k). 
The choices k = 2 and a' = b2 = 1 imply bi = a. By decomposing (s + uo) 

(s + vo)/(s + U2) (s + V2) into partial fractions, we easily obtain a new quadratic 
transformation for hypergeometric functions with one free parameter: 

(1 + a)R(a; a, I;i,) = (1 + a)R(a; - a, a, a; x, y, z) 

(4.3) -a(p-x)R(a + 1; l-a, a, a, 1; x, y, z, p) 

-a (T - x)R(a + 1; 1 - a, a, a, 1; x, y, z, y), 

where g, U1, VI, U2, V2 have been relabeled x, y, z, p, y and 

(4.4) t = yz/x, 77 = py/x, 

(p-x)Q(y-x) = (y-x)(z-x) . 

These relations imply that 

(4.5) rt (P y) (p Z) = ('y Y) ('Y _ p-x zY-x 

The quantitiesf = y + z - yz/x and uo - x = x - vo = [(y -X) (z - x)]"12 are 
determined by (4.2) but do not appear explicitly in (4.3). The restriction on the 
real part of a can be dropped by analytic continuation. 

Putting a = 1/2 in (4.3) and permuting x, y, z, we obtain three distinct rela-- 
tions for elliptic integrals. If i, j, k stand for any permutation of 1, 2, 3, we have 
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(4.6) (p - xi)Rj(x, y, z, p) + (y - xi)Rj(x, y, z, y) = 3RF(X, Y, Z) - 3Rf (ti, Xi) 

where 

(X1, X2, X3) = (X, Y, Z) 

(p - Xi) (Y - Xi) = (Xi - Xi) (Xk - Xi) 

(4.7) ti = XjXk/Xi, Xi = pY/xi, 

ni - (i = (p - Xi) (p - Xk)/(p - Xi) 

= (- Xj) ( -Xk)/( I - Xi) - 

The last equality shows that p and Py are both in circular intervals or both in hyper- 
bolic intervals. The function Rf is an elementary function defined by 

Rf (x, y) = RF(X, y, Y) 

R(Q;-, 1;x,y) 

(4.8) = (y X)-1 )2 Cos'1 (X/y)" /2 (0 ? X < Y) 

(X - Y)-1/2 cosh-1 (X/y)1/2 (0 _ y < X) 
= XY-1/2 ih- 1 (XI _ Y) 1/2 ( -(X - y)"2sinh' x- y"- (y < 0 ? x) 

When the second argument of Rf is negative, we have taken the Cauchy principal 
value of the integral representation (1.5); this case arises if p-y < 0. Real inverse 
circular or hyperbolic functions occur in the last term of (4.6) according as the 
parameters p and Py lie in circular or hyperbolic intervals. 

The transformation of p into Py determined by the second of Eqs. (4.7) will be 
called a ri-transformation, although we shall use the term also to designate the 
corresponding case of (4.6). Assuming 0 < X1 < X2 < X3, we can easily determine 
for given i and p the interval in which Py lies. The results are summarized in Table 1; 
if i = 1, for example, p E H' implies Py C H' whereas p C C' implies y C C. 

TABLE 1 

P Tj T2 T3 

H' H' H H 
C' C C C' 
H H H' H' 
C C' C' C 

The relations -ri and -r3 correspond in Legendre's notation to (1 - a2) (1 - a12) 

k'2 and a 2a12 = k2, respectively. The r2-transformation is the product of -ii and 73 

(which generate an Abelian group of order four in which each element is its own 
inverse) and corresponds to (a 2 - k2) (ai12 - k2) = -k 2 k'2. We have not seen this 
product transformation elsewhere, but the present notation brings it out on an 
equal footing with the other two and in a unified form. The transformation 73 is 
sometimes used in numerical work to transform an integral of type HI' into one of 
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type H, so that only the latter type needs to be tabulated, and similarly 1ri is used 
to transform type C into C'; the single transformation T 2 suffices for both purposes. 

To obtain similar results for complete integrals, we need only choose x = 0 in 
each transformation and use (2.9). The results are best expressed in terms of RL. For 
the ri-transformation we find 

(4.9) RL(y, z, p) + RL(Y, Z, YZ/P) = 2RK(Y, Z), 

in agreement with (2.11) and (2.12). The r3-transformation reduces to 

(4. 10) (p - y)(p - z)RL(Y, Z, P) + p(z - y)RL(Y, Z, ((P - Y)/(P - Z))Z) 

= 2y(z - p)RK(y, z) + 2[p(p - y)(p _ Z)-l/2 

in the circular cases; in the hyperbolic cases the last term is missing because 73 < 0 

and the Cauchy principal value of Rf is zero according to (4.8). The complete case 
of the r2-transformation is the same as that of the r3-transformation with y and z 
interchanged. 

5. Landen and Gauss Transformations. Equation (4.1) is the source of another 
set of quadratic transformations, namely the Landen and Gauss transformations. 
When used recursively, these provide a method for numerical computation of 
elliptic integrals. 

If in (4.1) we choose k = 4, bi = b2 = 1/2, b4 = 1, a' = 2, and f = (ZlZ2)'12, 

g = (Zi1/2 + z21/2)2/4, then from (4.2) it can be shown that u1 = vi = uo = (zig)1/2 

and U2 = V2 = Vo = (z2g)1/2. Expanding (s + f)/(s + U4) (s + V4) in partial fractions 
and relabeling variables, we find a new quadratic transformation with one free 
parameter: 

(oI - r)R(a; 1/2, 1/2, a, 1; x, y, z, p) 

(5.1) = (p -r)R(a; 1 - a, a, a, 1; u, v, w, o) 

+ (I-p)R(a; 1 - a, a, a, 1; U, VI W, Wr) 
where 

2u = (xy)"/2 + (x + y)/2, 

2v = (xy)1/2 + z + (z - x)1/2(z _ Y)1/2 

(5.2) 2w = (Xy) 1/2 + z - (z - x)112(z _ Y)1/2 

2o- = (xy)1/2 + p + (p _ X)1"2(p _ Y)1/2 

2r = (xy)1/2 + p - (p _ X)112(p _ Y)1/2 
The inverse relations are 

x = [U + (U - v)1/2(U - w)12]2/U 

Y = [u - (U - v)/2(U 
_ 

W)'12]2/U 

(5.3) Z = VW/U =V+W (XY)1/2 

P = or/u= o- + 7 - (xy)"/2 

(G- u)(r - U) = (v - u)(w - u) . 
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Putting a = 1/2 in (5.1), we have 

(5.4) (a - r)RH(x, y, z, p) = (p - r)RH(u, V, WI C) + (a - p)RH(u, VI WI r) 
or, in terms of RJ, 

(5.5) (a -7-)pRj(x, y, z, p) = (p -7r)o-Rj(U, V, WI C) + (a - p)-rRj(u, V, W, -r) 

Because oar = up, (5.5) reduces to 

(5.6) (a -7-)Rj(x, y, z, p) = (a - U)Rj(U, v, w, ) -( - U)Rj(U, v, WI -r) 

One of the RJ terms in (5.6) can be eliminated since the relation (a - u) (-r - u) 
(v - u) (w - u) is formally the same as the relation between p and Py in (4.4). 
Using (4.6) and recalling from [3] that RF(X, y, z) = RF(U, v, w), we find 

(5.7a) 2(o - u)RJ(u, v, w, a) = (a - upjo-)Rj(x, y, z, p) 

+ 3RF(XI Y, Z) - 3Rf(z, p) 

(5.7r) 2(r - u)Rj(u, v, w, 7-) = (r - up/j-)Rj(x, y, z, p) 

+ 3RF(XI Y, Z) - 3Rf(z, p) 

If we assume x, y, z nonnegative and p real, then (5.2) is a real transformation 
if and only if (z - x) (z - y) > 0 and (p - x) (p - y) ? 0. Let the real T-axis, 
and likewise the real i--axis, be divided into circular and hyperbolic intervals 
C', C', IX, D separated by the nonnegative numbers u, v, w arranged in increasing 

order. The preceding condition on p and the identities 

(5.8) ( - v)(u - w) _ (r - v) (r- w) 

ensure that p, a, and r are all in circular intervals or all in hyperbolic intervals. 
Table II shows which intervals occur in each case. For definiteness we may take 
a _ -r by appropriate choice of sign of a square root, since the Landen and Gauss 
transformations are unaltered by interchanging a- and r (or x and y, or v and w). 
Note that p, a, r lie in corresponding intervals in all but two of the real cases. These 
two cases are inconvenient for iterative computation; and hence, for example, if 
p E] H' one would use (5.7-r) instead of (5.7o-) in making successive Gauss trans- 
formations. 

TABLE II 

Landen Gauss 
x, y < z z < x, y 
u < v, w v,Iw < u 

p a- T a- r 

H' 3C' 3dC 3 3C' 
C' complex complex C' C' 
H 3 3 complex complex 
C e e e 
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The Landen and Gauss transformations of Legendre's third integral [1, p. 39] 
can be found from (5.4) and (5.7) with the help of (2.5) and (5.3) (or (5.2) for the 
inverse transformations). Since the right-hand sides of (5.3) are symmetric in v and 
w, the transformation is fixed by choosing u from among the quantities cos2 k, A2, 
and 1. The choice u = cos2 0 gives Landen's transformation, u = A2 gives a complex 
transformation (see Section 6), and u = 1 gives Gauss' transformation in agreement 
with the inequalities in Table II. Thus the unified form taken by the quadratic 
transformation in present notation yields the Landen or the Gauss transformation 
according to the relative sizes of the arguments. 

To obtain the quadratic transformations of RM we put w = z = 0 in (5.7o-) and 
find 

(5.9) 2(o - u)RM[(xy)"', u, a] 

= (p - x)_' (p - y) '2RM(x, y, p) + 2RK(X, Y) - 2p' 
The complete case of (5.7 r) is obtained from (5.9) by replacing a- by r and changing 
the sign of the square root of (p - x) (p - y). 

6. Conjugate Complex Arguments. When an elliptic integral is reduced to 
standard integrals, it may happen that two of the arguments are complex conjugates 
of each other, say z and z, while the others are real. A quadratic transformation can 
be used to replace the complex arguments by real ones, as is done in [10, p. 227] 
for the integrals of the first two kinds. Similar results are easily found for 
RH, J(z, , x, p) from (5.4) and (5.6) or (5.7). In addition to replacing x, y, z by 
z, z, x, we need only substitute the following values obtained from (5.2): 

2u = jzj + Rez, 

2v = Izi + x + Iz - xI, 

(6.1) 2w = IzI + x - Iz - x, 

2o- = jzJ + P + IZ - P 

2r = Izj + p - Iz - PJ 

Alternatively, we may replace u, v, w by x, z, z and use (5.3) and (5.7). 

7. The Interchange Theorem. When Jacobi's integral (2.2) is regarded as a 
function of two integrals of the first kind, the theorem for the interchange of ampli- 
tude and parameter takes its simplest (but not always real) form [8, p. 159]. The 
corresponding results for Legendre's third integral, which are given by Cayley 
[8, pp. 133-141] except for integrals of type H', are complicated and take different 
real forms in the various circular and hyperbolic intervals. However, they are useful 
because their complete cases allow Legendre's complete integral of the third kind 
to be expressed in terms of integrals of the first and second kinds [11, pp. 189-192]. 
Similarly the interchange theorem for RJ takes two different forms but allows the 
complete integral RM (and therefore RL) to be expressed in terms of RF, RG, RK, 
and RE. 

Let x = (X1, X2, X3) and 5(x, p) = (p - x1) (p - X2) (p - X3). From (2.7) and 
(1.5) we find 
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(7.1) a RJ(x, p) =-5 RQ(; 2, , 2 , 2; xi, X2, X3, P) 

By means of relations between associated functions [2, p. 458] the right-hand side 
can be expressed in terms of RF, RG, and RJ, with the result that 

2)(XI(, ) p RJ(x, p) + RJ(x, p) aa (X, p) 

= 3pRF (X) - 6RG(X) + - (XX2X3)2 

Let i, j, k be a permutation of 1, 2, 3. Putting p = xi in (7.2) and using the resulting 
equation to eliminate RG, we have 

26(x, p)a Rj(X, p) + RJ(x, p) I(X, p) 

= 3(p - xi)RF(X) + (Xi - Xi)(Xi - Xk)RJ(x, xi) - 3 - 
s (Xk) 

Assume now that xi, xi, Xk, p are positive and pairwise unequal and that neither 
x; nor ok lies between xi and p. Let E denote the sign of -6(x, p) and si the sign of 
p - xj; note that (p - xj) (p - Xk) and (x -xj) (xi - Xk) both have the sign 
- Esi. Then (7.3) can be written as 

-26E1(x, p)l1/21a {Ia(x Ip)I1"2Rj(x, p)} = 3silp - xiIRF(X) 

-esEi|Xi - x jlxi - XklRJ(x, xi) - 3s i P Xil Xk) 

We divide both sides by l1(x, p)11/2, replace p by t, and integrate with respect to t 
from xi to p if si = +1 or from p to xi if si = -1. By using [10, Eq. (T.1)] each 
integral on the right-hand side can be written as an R-function in which the first 
three arguments are the components of x' = (X1', X2', X3%), where 

xit = Xi, 

(7.5) (X3' - xi)(xi - xi) = Xi(Xi - P) 

(Xk' - Xi) (Xk - Xi) = Xi(Xi - P) 

If we define 

(7.6) Vi(x, P) = p - xj/21p - Xkl /2 RJ(x, p) 

the resulting theorem for interchange of x and x' takes the form 

(7.7) Vi(x, p) - xi 2RF(X')Vi(X, xi) = E{Vi(X', p) - Xi 2RF(X)Vi(X', Xi)}, 

(i = I,2,3). 

Only the first term on each side is an integral of the third kind, for we have 

RJ(x, xi) = R(; , 3, "; xi, X, Xk) 

(7.8) (zi - Xj) (Xi- ok) [XjRF(X) - 2RG(X) + (yk) 1 
(XIi X ) Xi- Xk) 
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It is easy to verify that (xi - xj')(p- x') = xl/xj > 0 and similarly for Xk', 

whence it follows that neither x/' nor Xk' (nor x; nor Xk, by assumption) lies between 
xi and p, the two invariant points. Moreover, (p - Xi') (p - Xk') has the sign 
- Esi, and hence p lies either in circular intervals with respect to both x and x' or 
in hyperbolic intervals with respect to both, as is shown in more detail in Table III. 
Since E is the sign of (xi - p) (x; - p) (Xk - p), it is +1 in hyperbolic cases and 
-1 in circular cases. 

TABLE III 

(x', p) 

(XP) 0 < Xi < p 0 < p < xi 

H' H' 
C' C C' 
H H H 
C C' - 

The preceding method fails because of divergent integrals if we attempt to 
integrate from 0 to p or from p to i: oo, and hence we have no theorem yet for the 
case p < 0. A remedy is to substitute (2.10) in (7.2) in order to show that 

4a(x, p) a RI (x P)+ 2RH(XP) -aa (x p) 
(7.9) -I 

PP 9 

3RF(X)2X1X2X3 X1X2 + X2X3 + X3X12 3 /2 
= 3RF (X) 2 X -X ? 6RG(X) - - (X1X2X3)1 

Assuming x1, X2, X3 are positive and p is negative, we can now divide by a (x, p) 11/2, 
replace p by t, and integrate with respect to t from - oo to p. Since p is negative, 
RH(X, p) is taken to be a Cauchy principal value, and it is easy to verify by (2.6) that 

(7.10) lim (-p) 2RH (X, P) = RH(0, 0, 0 -1 ) = 0, 
P-~-oo 

in contrast with the last but one of Eqs. (2.9). The final result is best expressed in 
terms of RJ and can be put in the same form as a second result obtained similarly 
for the case 0 < X1, X2, X3 < p by an integration from p to + oo . Letting E denote as 
before the sign of (xi - p) (x2 - p) (X3 - p) and defining 

X= (X1t, X2', X3') = E(X1 - P. X2 - P, X3 - P)) 

(7.11) =P -EP, 

W(X, P; X', P') = 3 (X1X2'X3')'1 /2RJ (x, p) + RF (X') 

X [X1RF (X) - 2R(;(x)] + (1 - e)7r/8 

we have the further interchange theorem 

(7.12) W(X, P; X', P') = ETV(X', P'; X, P) 

In the case E = 1 this theorem connects two RJ's of type H', one with a negative 
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and one with a positive value of the fourth argument. In the case e = -1 both 
integrals are of type C. In both cases the terms proportional to xi and xi' can be 
combined by noting that x, - ExI' = p. 

The complete cases of the interchange theorems have special interest. Putting 
Xk = 0 in (7.5), we observe that Xk' = p and hence Vi(x', p) = 0 in (7.7). By (2.9), 
RJ reduces to RM and we encounter 

RM(Xi,yxX, xi) = R(23; 23 21; x, X) 
(7.13) 2 

- x1) [XiRK(Xi, xi) - RE(Xi, xi)] 

The form of (7.7) can then be simplified by introducing the function 

(7 14R(12; 2, 1, -2; XI Y, Z) = (ZX)RJ(X, Y, Z, X) + RF(X, Y, Z) 

= - x) [YRF(X, Y, Z) - 2RG(X, Y, Z) +(C) :1 

where the last equation follows from (7.8). The resulting expression for RM in terms 
of integrals of the first and second kinds is 

( (Xt - X1) (pXj/IXi)I12RM(X i Xj, p) = XiRK(Xi, Xj)R(I. 
3 
2, - 1; X., Xj', p) (7.15) 2i KXj 2 !YY ) S 

-RE (Xi, Xj)RF (Xi, X/', p) 

where xi, xj, p are positive, xj does not lie between xi and p, and xj' is given by (7.5). 
To obtain the complete case of (7.12) we put X3 = 0 in (7.11) and observe that 

X3t = p'. The result is 

2~ (X1 X21PI) RMX2X2, P) = RE (XI) X2)RF(Xl'y X2,j P ) 

(7.16) + ERK(XI, x2)[p RF (X1, X2, p') - 2RG(xl, X2 1'j )] - 1 2 P 

where xi and X2 are positive and p is either negative or else positive and greater 
than xi and X2. The quantities xi', X2', p' are defined by (7.11), and e = -p/p' is 

the sign of - p. If E = -1 and p is put equal to the larger of xi and X2, the left-hand 
side vanishes and (7.16) becomes equivalent to Legendre's relation [9, p. 320] 
between complete integrals of the first and second kinds. 

Comparison of (7.15) and (7.16) with known results for Legendre's third integral 
involves some subtleties. Tricomi [11, pp. 189-192] gives formulas for integrals 
of types H', C', H, C in four parts of Eqs. (3.107) which are labeled (I), (II), (III), 
(IV), respectively. (The square brackets in (II) should be multiplied by (k')-2. 

These formulas are reproduced in [9, p. 321] but with misprints in Eqs. (22) and 
(24).) However, the four equations have alternative forms, designated here by 
(Ia), (IIa), (IIIa), (IVa), which are obtained by using a special case of the addition 
theorems for F and E. The procedure is indicated by Tricomi preceding Eq. (3.112), 
which is essentially (IVa), but the other three equations are not given explicitly. 
The various cases of (7.15), distinguished by the relative sizes of xi, xj, and p, are 
equivalent for integrals of type C' to (IIa), for type H to (IIIa) or (III) according 
as xi < p < xi or xj < p < xi, and for type C to (IV). For integrals of type C, 
(7.16) is equivalent to (IVa) and for type H' to (I), except that the imaginary term 
in (I) is missing because RM is a Cauchy principal value. 
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8. The Addition Theorem. The cubic polynomials (t + x) (t + y) (t + z) and 
t(t - X) (t - M) have equal values for exactly one value of t if and only if the qua- 
dratic polynomial 

(8.1) Q(t) = (t + x) (t+ y) (t+ z) -t(t- X)(t-j) 

= t2(x + y + z + X + A) + t(xy + yz + zx - X1.I) + xyz 

has a double zero. For fixed positive x, y, z we denote the discriminant of Q by 
D(X, au); the condition for a double zero is D(X, ,) = 0, i.e., 

(8.2) (XI-xy yz zx)2=4xyz(x + y + z + X +). 

This biquadratic relation between X and ,u has a branch on which both are positive 
and 

(8.3) xy + yz + + 22 [XYz (X + x) (X + y) (X + Z)]"/2, 

where the positive square root is taken. Note that p = 2(xyz)"/2X-"/2 + O(X-1) as 
X --+ oo. The same relations hold with X and ,u interchanged. Since it follows from 
(8.3) that X/i - xy - yz - zx > 0, the double zero of Q is positive: 

Q (t) Q,(to = 0 to XA - xy - yz - zx 

(8.4) Q(to) Q'(to) = 0, to = 2(x + y + z + X + As) 

_(xyz)' /2 >0 

(X + y + Z + X + /,) 1 2 

We denote the positive square root of Q by 

(8.5) [Q(t)]1/2 = +(x + y + z + X + A)1"2t F (xyz)"2, 

where the upper signs are to be taken for t > to and the lower signs for t < to. It 
is easily seen from (8.4) that X > to and Au > to. 

Differentiating D(X, ,u.) = 0 and noting that 

aDlaX = 2(XA - xy - yz - zx)A - 4xyz 

= 4(XYz)"12(X + y + z + X + A)1/2A - 4xyz 

= 4(XYZ) 1/2[Q (A)]l /2 

we find 

(8.6) dX +)] du+_ 0. 
[Q(X~~)]1/2 QA12 

Since Q(X) = (X + x) (X + y) (X + z) by (8.1), and similarly for Q(A), the differential 
equation can be integrated at once in-terms of elliptic integrals to give 

(8.7) RF(X + X, y + X, Z + X) + RF(X + u, y + A, z + A) = RF(X, y, z) . 

The integration constant on the right side is determined by recalling that ,U -* 0 
as X -+ oo and that RF is homogeneous of degree - 1/2. Equation (8.7) is the addi- 
tion theorem for Rp, wherein X and ,u are related by (8.2). 

If p is any fixed positive number, it follows from (8.5) that 
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I[Q(X)]'2 + [Q(-P)]' 1= [Q(14)] 12 + [Q(-p)]1'2 (8.8) Xp /I p 

Multiplying the first term of (8.6) by the left side of (8.8), and the second term by 
the right side, we have 

(8.9) dX + dA ____ -1 (dX + )A 
[Q(X)]1/2(X + ) [Q( + p = I + p 

Let 6 = (p -x) (p - y) (p - z) and let co = co(X, Iu) be defined for fixed x, y, z, p 
by 

X =Q(-p) = p(p + X)(p + /1)- (p-x)(p-y)(p-z) 
(8.10) = p(p + X)(p + ) - 8. 

Then the right-hand side of (8.9) can be rewritten as -dco/w"2(co + 5) and the 
differential equation can be integrated at once to give 

(8.11) RJ(x + X, y + X, z + X, p + X) + Rj(x + 1i, y + }1, z + ii, p + 1i) 

= RJ(X, y, z, p) - 3Rf (o, co + 6) 

where Rf is an elementary function defined by (4.8). This is the addition theorem 
for RJ. Its proof appears to be substantially simpler than the proof for Legendre's 
integral [8, pp. 104-106]. 

If p is replaced by x in the last paragraph, (8.11) becomes an addition theorem 
for R(3/2; 3/2, 1/2, 1/2; x, y, z). Expressing this function in terms of standard 
integrals by (7.8), we obtain the addition theorem for RG: 

2RG(X + X, Y + X, Z + X) + 2RG(X + ,1, y + 1u, z + 1u) - 2RG(X, Y, Z) 

(8.12) =XRF(X + X, y + X, Z + ?X) + ? RF(X + 1u, y + 1u, z + u) 

? (X ? y + Z + X + 1/2 

The addition theorems (8.7), (8.11), and (8.12) become duplication theorems 
if we choose the particular solution of (8.2) given by 

(8.13) X = = (Xy)"/2 + (yz)"/2 + (zx)"/2 

The quantity Co in (8.11) is then determined according to (8.5) by 

(8.14) Co 
/2 = (X1/2 + y1/2 + zl/2)p + (xyZ)1/2 

Another important special case occurs if z = 0, so that one of the elliptic integrals 
in each addition theorem is complete and (8.2) reduces to X/4 = xy. It is convenient 
then to replace x, y, p, X, 1u by x - z, y - z, p - z, z, v + Z, respectively, where z 
is now positive but smaller than x and y. The addition theorem for RF, for example, 
reduces to 

(8.15) RF(X, Y, Z) + RF(X + V, Y + V, Z + V) = (,r/2)RK(x - Z, Y - Z) 

(v = xy/z - x - y) . 

9. Inequalities. Let x, y, z, p be positive and not all equal. We find from [5, Eqs. 
(2.4) and (2.7) and Theorem 2] that 
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(9.1) ( ? y z ?2) < RH(X, y, z, p) < [Rj(X, y, z, p)]"/ < (XYZP2)'110 

(9.2) 2(x + y + 2p)"2 < RL(X, Y, P) < [lRM(X, Y, P)]"3 < (XYP2)'18. 

An improved lower bound for Rr is furnished by [5, Theorem 3], with the result that 

(X1/2 + y1/2 + z1/2 + 2p1/2\ < 
e 2 3 

< ) 

(9.3) 5 <lRj (x, y, z, p) < (xyzp )_11 

Upper bounds that are numerically better but algebraically more complex can be 
found by using convexity properties of the R-function [6], [12]. 

All these inequalities tend to be sharp when the ratios of x, y, z, p are close to 
unity. In the duplication theorem 

(9.4) RF(X, Y, Z) = 2RF(X + X, Y + X, Z + X) 

where X is given by (8.13), the ratios of the arguments are closer to unity on the 
right side than on the left. Applying [5, Theorem 2] to the right side, as suggested 
by W. H. Greiman, we find 

(9.5) 3 < RF(X2, Y2, z2) < 2[(x + y)(y + z)(z + x)]F", 

where x, y, z are positive and not all equal. The left-hand inequality is the same as 
that in [5, Eq. (4.7)], and both inequalities are sharper than those in [5, Eq. (4.5)]. 
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